COMBINATORICA

Akadémiai Kiadó - Springer-Verlag

PERFECT MATCHINGS IN BALANCED HYPERGRAPHS

MICHELE CONFORTI, GÉRARD CORNUÉJOLS, AJAI KAPOOR and KRISTINA VUŠKOVIĆ

Received February 23, 1995

We generalize Hall's condition for the existence of a perfect matching in a bipartite graph, to balanced hypergraphs.

One of the first results on matchings in graphs is the following celebrated theorem of Hall [6]:

Theorem 1. A bipartite graph G(V, E) has no perfect matching if and only if there exist disjoint node sets R and B such that |B| > |R| and every edge having one endnode in B has the other in R.

Berge [1] introduced the following generalization of bipartite graphs: A hypergraph H(V, E) is balanced if every odd cycle C of H has an edge containing at least three nodes of C. We refer to Berge [2] for an introduction to the theory of hypergraphs.

Here we prove the following theorem:

Theorem 2. A balanced hypergraph H(V,E) has no perfect matching if and only if there exist disjoint node sets R and B such that that |B| > |R| and every edge contains at least as many nodes in R as in B.

It is well known that a bipartite graph with maximum degree Δ contains Δ edge-disjoint matchings. The same property also holds for balanced hypergraphs.

Mathematics Subject Classification (1991): 05 C 65, 05 A 18, 05 C 70

This work was partially supported in part by NSF grants DMI-9424348, DMS-9509581 and ONR grant N00014-89-J-1063. Ajai Kapoor was also supported by a grant from Gruppo Nazionale Delle Riccerche-CNR. Finally, we acknowledge the support of Laboratiore ARTEMIS, Université Joseph Fourier, Grenoble.

(Corollary 1 of Theorem 8 in Chapter 5 of [1]). Observations due to Bill Cunningham and Dominique De Werra show that Theorem 2 also implies this property.

Corollary 3. The edges of a balanced hypergraph H with maximum degree Δ , can be partitioned into Δ matchings.

Proof. By adding edges containing a unique node, we can assume that H is Δ -regular. (This operation does not destroy the property of being balanced). We now show that H has a perfect matching. Assume not and let R and B be disjoint node sets such that $|R \cap E| \geq |B \cap E|$ for every edge E of H. Adding these inequalities, we get $|R| \geq |B|$ since H is Δ -regular. Since H is balanced, it follows from our theorem that H contains a perfect matching M. Removing the edges of M, the result now follows by induction.

The node-edge incidence matrix $A = (a_{ij})$ of a hypergraph H(V, E) is a 0, 1 matrix whose rows are indexed by the nodes in V, whose columns are indexed by the edges in E and whose entries $a_{ij} = 1$ if edge j contains node i, 0 otherwise. A 0, 1 matrix A is balanced whenever it is the incidence matrix of a balanced hypergraph H. The proof of Theorem 2 uses integrality properties of some polytopes associated with a balanced 0, 1 $m \times n$ matrix A. Let a^i denote the ith row of A, I the identity matrix and 1 the vector of all 1's.

Lemma 4. The polyhedron $P = \{x, s, t \mid Ax + Is - It = 1, x, s, t \ge 0\}$ has integral extreme points when A is a balanced 0, 1 matrix.

Proof. Let \bar{x} , \bar{s} , \bar{t} be an extreme point of P. Then $\bar{s}_i\bar{t}_i=0$ for $i=1,\ldots,m$, since the corresponding columns are linearly dependent. Let $Q=\{x\mid a^ix\geq 1, \text{ if }\bar{t}_i>0, a^ix\leq 1, \text{ if }\bar{s}_i>0, a^ix=1, \text{ otherwise, }x\geq 0\}$. Fulkerson, Hoffman and Oppenheim [5] show that Q is an integer polyhedron. Since \bar{x} is an extreme point of Q, \bar{x} is an integral vector and so are \bar{s} and \bar{t} .

A system of linear constraints is *totally dual integral* (TDI) if, for each integral objective function vector, the dual linear program has an integral optimal solution (if an optimal solution exists).

Lemma 5. The linear system, Ax + Is - It = 1, x, s, $t \ge 0$ is TDI when A is a balanced 0, 1 matrix.

Proof. Consider the linear program:

(1)
$$\max bx + cs + dt$$

$$Ax + Is - It = 1$$

$$x, s, t \ge 0$$

and its dual:

(2)
$$\begin{aligned} \min & \mathbf{1}y \\ yA \geq b \\ -y \geq d \\ & y \geq c. \end{aligned}$$

Let A be a 0, 1 balanced matrix with smallest number of rows such that the lemma does not hold. Then there exist integral vectors b, c, d, such that an optimal solution of (2), say \bar{y} , has a fractional component \bar{y}_i . Consider the following linear program:

where A^i denotes the matrix obtained from A by removing row a^i , and where c^i and d^i denote the vectors obtained from c and d respectively by removing the i^{th} component. Let $\tilde{y} = (\tilde{y}_1, \dots, \tilde{y}_{i-1}, \tilde{y}_{i+1}, \dots, \tilde{y}_m)$ be an optimal integral solution of (3). Define $y^* = (\tilde{y}_1, \dots, \tilde{y}_{i-1} \lceil \tilde{y}_i \rceil, \tilde{y}_{i+1}, \dots, \tilde{y}_m)$. Then y^* is integral and feasible to (2). We claim that y^* is in fact optimal to (2). To prove this claim, note that $(\bar{y}_1, \dots, \bar{y}_{i-1}, \bar{y}_{i+1}, \dots, \bar{y}_m)$ is feasible to (3). Therefore

$$\sum_{k \neq i} \tilde{y}_k \le \sum_{k \neq i} \bar{y}_k.$$

In fact,

$$\sum_{k \neq i} \bar{y}_k - \sum_{k \neq i} \tilde{y}_k \ge \lceil \bar{y}_i \rceil - \bar{y}_i$$

because $\sum\limits_{k\neq i}\bar{y}_k+\bar{y}_i$ is an integer by Lemma 4 and \bar{y}_i is fractional. So

$$\sum_{k \neq i} \tilde{y}_k + \lceil \bar{y}_i \rceil \le \sum_{k=1}^m \bar{y}_k,$$

i.e. y^* is an optimal integral solution to (2), and so the lemma must hold.

Proof of Theorem 2. The necessity of the condition is immediate. We prove the sufficiency. Let A be the node-edge incidence matrix of a balanced hypergraph H. Then by Lemma 4, H has no perfect matching if and only if the objective value of the linear program

(4)
$$\max 0x - 1s - 1t$$
$$Ax + Is - It = 1$$
$$x, s, t \ge 0$$

is strictly negative. By Lemma 5, there exists an integral vector y such that

$$y\mathbf{1} < 0$$

$$yA \ge 0$$

$$-\mathbf{1} \le y \le \mathbf{1}.$$

Set B to be the set of nodes i such that $y_i = -1$, R the set of nodes such that $y_i = 1$.

Then $yA \ge 0$ implies that each edge of H contains at least as many nodes in R as in B, and $y\mathbf{1} < 0$ implies |B| > |R|.

Total dual integrality of the linear system Ax+Is-It=1, x, s, $t\geq 0$ seems to be crucial to establish Hall's condition. For example, consider the perfect matrix below:

The system $Ax \leq 1$, $x \geq 0$ is TDI but not the system Ax + Is - It = 1 x, s, $t \geq 0$. The associated hypergraph H has no perfect matching, but this cannot be established with a bicoloring R, B satisfying the conditions of Theorem 2.

Standard proofs of Hall's theorem are combinatorial and quite easy. It would be nice to find a combinatorial proof of Theorem 2 which does not use the theory of integral polyhedra. For example, Hall's theorem can be easily proven from König's theorem. König's theorem also holds for balanced hypergraphs (Berge-Las Vergnas [3]). We do not know of a proof of Theorem 2 based on the Berge-Las Vergnas theorem. It would also be interesting to know if this theorem holds for a class of hypergraphs that strictly includes balanced hypergraphs.

Given a 0 ± 1 matrix A, let n(A) be the vector whose i^{th} component is the number of -1's in the i^{th} row of A. A 0 ± 1 matrix A is balanced if for every square submatrix with two nonzeroes per row and column, the sum of the entries is congruent to 0 modulo 4. (If A is a 0, 1 matrix, this definition coincides with the previous one). Using the proof techniques in [4], it is possible to extend Lemma 5 to the following:

Lemma 6. The linear system Ax+Is-It=1-n(A), $0 \le x \le 1$, $s, t \ge 0$ as TDI when A is a balanced $0, \pm 1$ matrix.

References

- C. BERGE: Sur certains hypergraphes generalisant les graphes bipartites, in: Combinatorial Theory and its Applications I, (P. Erdős, A. Rényi and V. Sós eds.), Colloq. Math. Soc. János Bolyai 4, North Holland, Amsterdam (1970) 119–133.
- [2] C. Berge: Hypergraphs, North Holland (1989).
- [3] C. BERGE, and M. LAS VERGNAS: Sur un théorème du type König pour les hypergraphes, Annals of the New York Academy of Sciences 175 (1970), 32–40.
- [4] M. CONFORTI, and G. CORNUEJOLS: Balanced 0, ±1 matrices, bicoloring and total dual integrality, *Mathematical Programming*, **71** (1995), 249–258.
- [5] D. R. FULKERSON, A. HOFFMAN, and R. OPPENHEIM: On balanced matrices, *Mathematical Programming Study*, 1 (1974), 120–132.
- [6] P. HALL: On representatives of subsets, J. London Math. Soc., (1935), 26-30.

Michele Conforti

Dipartimento di Matematica Pura ed Applicata, Università di Padova, 35131 Padova, Italy. conforti@hilbert.math.unipd.it

Ajai Kapoor

Carnegie Mallon University, Schenley Park, Pittsburg, PA 15213 ajai@hilbert.math.unipd.it

Gérard Cornuéjols

Carnegie Mallon University, Schenley Park, Pittsburg, PA 15213 gcOv@andrew.cmu.edu

Kristina Vušković

Department of Combinatorics and Optimization,
University of Waterloo,
Waterloo, Ontario, Canada, N2L 3G1
kvuskovi@watdragon.uwaterloo.ca